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The performed numerical analysis reveals that Wynn’s identity for the compass 1/(N −
C) + 1/(S − C) = 1/(W − C) + 1/(E − C) = 1/η (here C stands for centre, the other letters 
correspond to the four directions of the compass) gives the long sought criterion, the 
minimal |η| or �-criterion, for the choice of the optimal Padé approximant. The work 
of this method is illustrated by calculation of multipoint Padé approximation by a new 
formula for calculation of this best rational approximation. The calculation of the optimal 
Padé approximant by this criterion is demonstrated in calculation of series summation 
– frequently encountered problem in theoretical physics. This study originates from a 
magneto-hydrodynamic problem of heating of solar corona by Alfvén waves, where the 
present method is used for a predictor in solution of differential equations. In such a way, 
an efficient and valuable control mechanism for N-point Padé approximant calculation is 
proposed. We believe that the suggested method and criterion can be useful for many 
applied problems in numerous areas not only in physics but in any scientific application 
where differential equations are solved. The obtained new solution of the Cauchy-Jacobi 
problem is illustrated by a Fortran program. The algorithm is generalized for the case of 
the first K -derivatives at N-nodal points. The numerical analysis of probability distribution 
function of the errors will review, which formula for extrapolation of functions deserves to 
be implemented in the applied mathematics software like Mathematica and Maple.
© 2020 The Authors. Published by Elsevier B.V. on behalf of IMACS. This is an open access 

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction and motivation

As the analytical structures take central place in theoretical and mathematical physics, the Padé approximants of func-
tions become one of the most important problems of applied mathematics. For a general introduction in the problem of 
Padé approximants, see the well-known monographs Refs. [5,10,8]. Since the problem was first systematically studied by 
Frobenius [7,13] and the Padé table introduced by Padé [7,27] in the 19th century, the contemporary literature is enormous. 
We mention only two well-known problems, which can be of broad interest for physicists: 1) series summation and 2) 
extrapolation of functions related to predictor-corrector methods for solution of ordinary differential equations. Searching 
for numerical recipes in this field, a beginner can read that the downside of the Padé approximation is that it is uncon-
trolled and the dangers of extrapolation cannot be overemphasized [28]. And after that our beginner will most probably 
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start searching for a commercial software, where the appropriate analytical formulae are programmed. By the very famous 
law: whatever can go wrong, will go wrong, in very interesting for the physics problems, the commercial software stops 
working and the research would continue only in co-authorship with the source code authors.

In 1947 Hannes Alvfén [3] suggested that the solar corona heating (the corona is 2 orders of magnitude hotter than 
the photosphere) is due to the absorption of magneto-hydrodynamic (now called Alfvén) waves. The programming of the 
magneto-hydrodynamic equations is relatively easy, but after 30-time temperature increase all available for us commercial 
computation software stops working. Facing such a problem, we had to develop an own method for a frequently encoun-
tered numerical problem (four first order linear differential equations coupled to four first order non-linear differential 
equations) [25,26]. Our research goal was to develop this method based on calculation of Padé approximants with a mech-
anism to select the most accurate approximant. This mechanism is precisely the main development of the current research 
and allows the usage of the described method for solution of differential equations. That is why we suppose that many 
colleagues are in our situation and we share know-how in calculation of Padé approximants.

Before starting let us recall the definition of multipoint Padé approximation [5]. A rational function f (z) which fits given 
function values yi at various points xi , i = 1, . . . , N , i.e. f (xi) = yi is called multipoint Padé approximant. The associate 
problem of interpolation by rational functions is called Cauchy [12]-Jacobi [18] problem [4]. If the Cauchy-Jacobi problem is 
solvable then the multipoint Pade approximant is the solution [29]. Multipoint Padé approximants are also called: rational 
interpolants, N-point Padé approximants, Newton-Padé approximants, etc., depending on the context. Addressing to experts 
in the present paper we present a general robust solution of the Cauchy [12]-Jacobi [18] problem which can attract interest 
and become a convenient tool in the applied numerical analysis.

2. Announcement of the results

For a practical implementation of an analytical result, we have to use a computer with finite accuracy of digital repre-
sentation of real numbers. The Padé approximants give fast convergence and actually the best rational approximation but 
they are sensitive to the noise of the discrete representation of real numbers. Roughly speaking, each value representing a 
real number suffers from error of discretization as it is multiplied by a random factor 1 + εmach(rnd − 1/2), where εmach is 
the machine epsilon (the biggest positive value for which 1 + εmach = 1), and “rnd” is a programming operator generating 
a random number homogeneously distributed between 0 and 1. As formulae for Padé approximants picturally speaking are 
very sensitive to the random noise of truncation, it is necessary to study the influence of the machine error εmach on the 
final result. In such a way beyond the analytical problem we have also a statistical one which already belongs to another 
branch of mathematics. Probably for some special cases it is possible to calculate the probability distribution functions (PDF) 
of the errors of the final result of calculation of Padé approximants, but it deserves to start with descriptive statistics of 
some well-known examples, which in our opinion illustrate how to calculate and choose the optimal Padé approximant 
in physical applications. Here the determination of the optimal Padé approximant is crucial, as our beginner has already 
learned from the numerical recipes book. To experts we propose a robust method which at least empirically works well.

Let rl,m(z) be different Padé approximants of the complex function f (z)

f (z) ≈ rl,m(z) =

l∑
i=0

ai zi

m∑
k=0

bkzk

, b0 = 1, (1)

where l is the maximal power of the numerator and m is the maximal power in the polynomial in the denominator. The 
first index in the notations of our paper rl,m = [l/m] is for the power of the numerator l and the second one m is for 
the power of the denominator. It is common practice to represent different approximants rl,m in a table with called a Padé 
table [5, Chap. 1, Sec. 1.1, p. 7, Tables 1 and 2]. For these approximants in 1966 Wynn discovered the remarkable relation [31, 
Eqs. (15) and (16)]

1

ηlm
≡ 1

rl,m+1 − rl,m
+ 1

rl,m−1 − rl,m
= 1

rl+1,m − rl,m
+ 1

rl−1,m − rl,m
, (2)

later on baptized by Gragg [17, Theorem 5.5] as missing identity of Frobenius [13]. According the Arnold’s principle: if a notion 
bears a personal name, then this name is not the name of the discoverer; while mathematicians such as Bernoulli, Cauchy, 
Jacobi, and Frobenius developed many of the ideas above long before Hermite or Padé [22]. The criterion for choosing an 
optimal Padé approximant is based on this Wynn relation which can be rewritten also as

1

η
≡ 1

S − C
+ 1

N − C
= 1

E − C
+ 1

W − C
, (3)

C ≡ rl,m, N ≡ rl,m−1, E ≡ rl+1,m, W ≡ rl−1,m, S ≡ rl,m+1. (4)

If C is in the Centre, the notations of the other elements N, E, W , S follows the direction of the compass: North, East, West, 
and South, also found in the original paper of Wynn [31] (i.e. we use Central NEWS algorithm). Probably this representation 
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was an idea of Gragg, who has also described it [17], because of the footnote in Wynn’s paper on page 266 (if that is 
the case, Gragg was a referee of Wynn’s paper). The notations originate from the comparison of the Padé table with a 
geographical map: index l represents a horizontal position and index m a vertical one. For convergent Padé approximants

f (z) = lim
l,m→∞

rl,m(z) (5)

in the Padé table C, N, E, W , S → f (z), 1/η → ∞, and

lim
l,m→∞

ηlm = 0. (6)

In numerical implementations this limit leads to minimal-|η| criterion of the CNEWS algorithm.
Let us repeat in other words. Often the difference between sequential Padé approximants gives a reasonable evaluation 

of the error, see Ref. [5]. In case of convergence, we have vanishing differences between the values of different cells of 
the Padé table (rl,m+1 − rl,m) → 0, for l, m → ∞ and l/m = const. In this case also ηlm → 0 and the minimal value of ηlm

gives a reasonable criterion for the minimal error and the choice of the optimal Padé approximant. In many examples of 
calculation of Padé approximants we arrive at the conclusion that the long sought criterion for the choice of the optimal 
Padé approximant is simply a search for the minimal value |ηl,m|, i.e.

� ≡ ηmin ≡ |ηL,M | = minl,m|ηl,m| (7)

and f (z) ≈ rL,M . The letter � (with spelling wynn, also spelled wen, �ynn, or �en) is a letter of the Old English alpha-
bet, where it is used to represent the sound /w/, is used in honor of one of the creators of numerical analysis Peter Wynn 
(mathematician, born 1932) with main achievements concern approximation theory, in particular the theory of Padé approx-
imants and its application in numerical methods for improving the rate of convergence of sequences of real numbers [9]. 
We consider that the Wynn identity gives the long sought criterion for the choice of the optimal Padé approximant. It is 
technologically and aesthetically attracting that the Wynn identity gives simultaneously 1) explicit method for the calcula-
tion of Padé approximants and 2) method for the evaluation of the error; limηmin = 0 is actually a criterion for convergence 
of Padé approximation if we consider real numbers. Our criterion is an alternative of the singular value decomposition (SVD) 
method described in great detail in Refs. [16,6], see also Refs. [19,14,15,21,32]. Our minimal η or � criterion and the toler-
ance level of SVD are perhaps different implementations of one and the same idea. For both methods the rounding error is 
something external for the theory of Padé approximation. There are no theoretical justifications which method is better. The 
numerical experiment and the descriptive statistics are just the first steps in the practical realizations on the robust Padé 
approximants.

The purpose of the present work is to demonstrate how this criterion works and how it can be used in applications. In 
the next section we illustrate in detail this criterion in the problem of calculation of limits of numerical series.

3. The new algorithm for determination of the optimal Padé approximant

Let us have a numerical sequence {S0, S1, S2, . . . , SN } and we need to calculate the limit S̃ = lim
l→∞

Sl . The well-known 

method is to initialize rl,0 = Sl , for l = 0, . . . , N , and also r−1,l = ∞ for l = 0, . . . , N + 1. In other words we treat every term 
of the initial series as polynomial approximation of some function

rl,0 =
l∑

i=0

ai z
i = Sl. (8)

The method can work even if this sequence is convergent, and those are the most interesting cases for applications. Then 
we calculate in the “south direction” the corresponding Padé approximants

S = C + 1
1

E − C
+ 1

W − C
− 1

N − C

(9)

or

rl,m+1 = rl,m + 1
1

rl+1,m − rl,m
+ 1

rl−1,m − rl,m
− 1

rl,m−1 − rl,m

(10)

and simultaneously calculate the empirical error

ηlm = 1
1 + 1

≡ η = 1
1 + 1

, (11)
rl+1,m − rl,m rl−1,m − rl,m E − C W − C
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Fig. 1. The logarithmic function (line) and the series summation with ηmin criterion for the optimal choice (dots). The calculated values are evaporated from 
the analytical curve, but ηmin criterion gives reliable warning depicted in Fig. 2.

with special cases

η = 0, if E = C or W = C . (12)

The special case 1/(N − C) = 1/(W − C) + 1/(W − C) of zero denominator in Eq. (9) means that the reciprocal value of 
the quantity we calculate 1/S ≈ 0 is within the used accuracy. The minimal absolute value � ≡ ηmin is our criterion for 
the determination of the optimal Padé approximant. According to the best we know, this minimal-|η| criterion has never 
been implemented in the numerical recipes so far (authors will very much appreciate any information about this). In the 
beginning when N = ∞, the Wynn identity Eq. (9) gives the well-known �-process by Aitken S ≈ C + η, which is exact for 
the geometrical progression series.

For the programming task, we have to calculate all the values, for which division is possible. In the next section we 
thoroughly describe 2 technical examples.

4. Two easy pieces

4.1. Calculation of divergent series ln(1 + x)

Perhaps the most famous example summation of divergent series by Padé approximants is the calculation of the diver-
gent Taylor series ln(1 + x) beyond the radius of convergence |x| < 1

ln(1 + x) = S̃ ≡ lim
n→∞ Sn, Sn(x) ≡

n∑
k=1

(−1)(k+1) xk

k
. (13)

The application of Eq. (10) and Eq. (11) gives the optimal Padé approximant for every positive x shown in Fig. 1. Even for 
x ≈ 20 for the calculation of the series ln(1 + x) a pixel accuracy is present. In many articles results of numerical calcu-
lations are illustrated by the figures presented by computer graphics with million pixels. For such a figures pixel accuracy 
means maximal error in which the approximation is undistinguished from the exact result when graphically presented on 
screen. For many applied studies this is an acceptable beginning. For larger values of x the dots representing the calculation 
evaporate from the line representing the exact value. The most important detail is how and when the method stops working 
and when the resources of the numerical accuracy are exhausted. The real εreal and empirical εemp ≡ ηmin of the calculation 
are shown in Fig. 2. The empirical error εemp ≡ ηmin shows saturation and is a reliable indicator for the calculation accu-
racy. Statistical analysis of the correlation between both errors from Fig. 2 shows very strong dependence between them 
in Fig. 3. Now we can safely tell how accurate our Padé approximation is and even how far out in x it can be extended. 
This dependence reveals that the long sought criterion for empirical evaluation of the accuracy of the Padé approximants 
calculated by ε-algorithm has already been found.

4.2. Extrapolation of a sine arch from a preceding one

The second technical example we present is the problem of extrapolation of function which we illustrate in the case of 
the sine function. We take N equidistant interpolation points from one arch of the sin(x) function and extrapolate the next 
arch and even beyond. We use the well-known Aitken interpolation method [2,11,1,20] to order the interpolation points 
within the arch and the point to be extrapolated. In more details: we calculate yi = sin(xi) for all N points i = 1, . . . , N . The 
digital noise is minimized if the points are ordered with the proximity with the point of interpolation, i.e.
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Fig. 2. Square of decimal logarithms of empirical εemp ≡ ηmin and real εreal error versus the argument of the function for the calculation of the ln(1 + x)
series in Fig. 1. Close to the convergence radius the errors are small and almost linearly increase, then the errors reach saturation when the numerical 
resources of the fixed accuracy are exhausted.

Fig. 3. The logarithm of the empirical ηmin ≡ εemp versus logarithm of the real εreal error for the calculation of the ln(1 + x) series in Fig. 1. The high 
correlation coefficient 0.961 of the linear regression reveals that the long sought criterion for empirical evaluation of the accuracy of the Padé approximants 
calculated by ε-algorithm has already been found.

|x − x1| < |x − x2| < |x − x2| < · · · < |x − xN |. (14)

Then using sequentially l interpolation points in the Aitken scheme we calculate the corresponding polynomial approxima-
tion Sl for l = 1, . . . , N . Next we apply the CNEWS method and use the minimal-|η| for the best Padé approximant. In this 
manner we have a numerical sequence that we give to the ε-algorithm to calculate its limit. The described calculation for 
the sin(x) function is shown in Fig. 4. The preceding arch is in the interval (−π, 0) and contains 21 interpolation points. 
Using these points, we extrapolate one arch with 2000 points in the interval (0, π) and continue the extrapolation in an 
attempt to obtain a second arch with the same number of points in the next interval (π, 2π). We repeat the procedure: 
every extrapolated point is calculated independently using the Aitken method for interpolation followed by calculation of 
Padé approximants by the Wynn identity and the optimal Padé approximant is chosen by the advocated in the present 
paper ηmin criterion. The deviation of the points from the real function represented with the line in Fig. 4 shows the limit 
of applicability of the Aitken-Wynn extrapolation algorithm. Detailed error estimates of the extrapolation are shown in 
Fig. 5. The ηmin criterion shown in Fig. 5 gives the reliable order estimation of the error. The similar behaviour of both 
errors shows that our criterion is a reliable method for error estimation. Furthermore, a statistical analysis of the correlation 
between the real εreal and the empirical error εemp shows very strong dependence in Fig. 6.

The literature on the problem of extrapolation is enormous, however we have not found a discussion of the problem in 
mathematical statistics. If we know the values of the function with some accuracy, how to choose the best Padé approximant 
among the many, some of which have serious noise of rounding and others are even uncontrolled [28]. There is a huge 
literature about the formulae, but a convenient criterion for the choice of optimal Padé approximant is not discussed. 
We give our illustrative example not as an exercise in programming, but as an illustration that we have a good working 
criterion for many practical cases. As a rule, articles on Padé approximation are illustrated by examples describing how 
some method is good working. But the instructive analysis reveals where the method stops working and most importantly 
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Fig. 4. Extrapolation of the function sin(x) (small dots) from 21 interpolation points (larger dots) in the interval [−π, 0] compared with the real function 
(line). In the interval (0, π) the function is reliably extrapolated and the limit of the numerical implementation of the Aitken-Wynn extrapolation is clearly 
shown – a gas of extrapolated points evaporated from the analytical function.

Fig. 5. Squared logarithm of the error estimates ε of the sin(x) extrapolation shown in Fig. 4. The error εreal is the real error of the extrapolation and the 
error εemp ≡ ηmin. The similar behaviour of both errors shows that our criterion is a reliable method for error estimation, which is evident in Fig. 6. The 
important problem in front of the applied mathematics is to research real extrapolation error beyond the extrapolation interval.

Fig. 6. Logarithmic dependence of ηmin ≡ εemp as a function of the real error εreal for the extrapolation shown in Fig. 4. The slope of the line of the linear 
regression is 0.973, the intercept is −0.887 with a correlation coefficient 0.979. This strong correlation sets in the agenda the problem of the statistical 
properties of the Padé approximants and the investigation of the corresponding probability distribution functions (PDF).
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whether any criterion warns that calculation resource has been exhausted. From a practical point of view, exhaustion of 
resources for extrapolation is demonstrated by evaporation of the extrapolated points from the analytical curve, and one of 
the achievements of the present work is that order of the magnitude of this deviation is reliably indicated by our criterion 
based on the Wynn identity.

5. Discussion and conclusions

In spite that the literature for Padé approximants is enormous we were unable to find alternative formulas, methods, 
algorithms and programs to compare the work of our method. One can put in the agenda for the development of the 
numerical analysis a simple test: which method for extrapolation of functions from tabulated values in N points gives 
the best extrapolation of a function far from the interpolation interval. This juxtaposition will give the final verdict which 
method is appropriate to be implemented in commercial software like Mathematica and Maple.

The new result of the implementation of calculation of Padé approximants and their application is the modulus mini-
mization ηmin of Wynn’s ηlm as reliable empirical criterion of the error. The preformed analysis of several simple examples 
reveals that for practical implementation of Padé approximants we can use the empirical ηmin error extracted from the 
Wynn’s identity. The comparison of the descriptive statistics data for the PDF of errors of calculation of Padé approximants 
by different criteria will give the answer what general recommendation as a numerical recipe has to be given to users not 
willing to understand how.

In short, the practical implementation of Padé approximants can reach one order of magnitude more applications in 
theoretical physics and applied mathematics. More than half a century after its discovery, the ε-algorithm has not been 
included for calculation of divergent series with convergent Padé approximants and for extrapolation of functions in com-
mercial software. Now the time for this inclusion has come, the herein implemented control mechanism has rendered this 
mission possible.

Last but not least, the suggested criterion Eq. (11) is applicable in solution of differential equations, numerically per-
formed analytical continuation, perturbation, series summation and other analogous problems in theoretical physics.

Let us summarize our results: 1) we have suggested a method for empirical choice of optimal Padé approximant which 
works for all examples we have met in the literature and seems to have universal applicability, 2) we derived a new formula 
for the N-point Padé approximant, for a function tabulated in N-points. This formula based on Aitken interpolation formula 
and Wynn identity is maximally robust with respect to truncation errors in the numerical calculations and can be used even 
for extrapolation. We have developed this method in order to obtain a predictor method for predictor-corrector methods 
for solving of one irrelevant for the present paper magneto-hydrodynamic problem, the programs where our formulae are 
implemented are given as appendices in the arXiv version of the present paper [24] and early and more detailed version 
has already been published in conference proceedings [23]. The figures in the paper are calculated by those programs. 
Reproducing the figures is the criterion that our formula can be used directly in numerical calculations. Up to now a 
non-specialist knows that extrapolation and summation of divergent series is a forbidden procedure used only by elite 
mathematicians. We have made a popularization addressed to user of applied mathematics working for the industry. 3) 
The described method can be used as a predictor method for solving ordinary differential equations dy/dx = F(x, y). The 
described N-point Padé approximation can be used as a predictor using former calculated points and their first derivatives 
as interpolation points to calculate the predicted value of the function ypred at the new point xnew of the argument. Then 
we calculate the derivative at the new point F(xnew, ypred). We consider this possibility as a new method for solution of 
ordinary differential equations. The method can be additionally improved if in the (x-y) plane we perform a rotation, and 
the new abscissa of the interpolation to be taken along the local tangent of the curve. We started with the problem of 
calculation of the temperature profile of the solar corona and velocity of solar wind [26] but this method can be applied 
for many other problems for which standard software is not (good) working. 4) If we know the first K derivatives of the 
function using of Taylor expansion we can calculate

ỹi = yi + (x − xi) y′
i + 1

2
(x − xi)

2 y′′
i + · · · + 1

K ! (x − xi)
K y(K )

i . (15)

Then we can use the Taylor approximants ỹi as interpolation points xi in the already described method. At the basic points 
the interpolated rational function will have exact coincidence not only for the function but also for its first K derivatives. The 
main idea of the algorithm is the same: using a node point xi we calculate the interpolated value ỹ(x) at the argument of 
interpolation, and then use this calculated value ỹ(x; xi) at this point as a new value in the node point yi = f (xi) ← ỹ(x; xi). 
If we need a formal proof of convergence it is necessary in the right side of Eq. (15) to put insert the evaluation of 
error h(K+1)M(K+1)/(K + 1)!, where h is the maximal distance between interpolating an node argument and M(K+1) is the 
supremum of the modulus of the (K + 1) derivative. This estimation of the error reveal why the analytical approximation is 
not applicable to function |x| and the trajectory of a Brownial particle.

Finally we have to remark. There is no general criterion for the convergence of the Padé approximation, and even to 
choose the optimal approximant when the method is convergent, that is why there are no theorems which could be cited. 
As all known existing methods are given without any empirical prescription for the choice of the optimal approximant, 
the considered minimal-|η| criterion of the CNEWS method can not be compared with other methods. The area of the 
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applicability of the suggested method is however well defined. For many applied problems it is known that solution exists, 
while for the analytical problems the solution is analytical. In many problems in physics, for example, there are alternative 
methods to check whether the sought solution is numerically obtained in spite that there will be no alternative methods. 
Contra-examples of mathematical series for which the Padé method does not work can be easily constructed. We are 
unaware of a real problem for which the solution is experimentally measured but the series can not be summarized by the 
exciting combinations of Euler-McLaurin summation and Padé approximation. That is why we believe that the suggested 
method, criterion and software can be useful for many applied problems in numerous areas not only in physics but in 
any scientific application where differential equations are solved. While other solutions of the Cauchy-Jacobi problem give 
calculation of the coefficients of the Padé approximants, we give a fast method for the calculation of its numerical value.
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Appendix A. Wynn CNEWS-algorithm source code in Fortran-90

This section includes the Wynn CNEWS algorithm written in Fortran-90 subroutine and used for the calculations pre-
sented in the figures. This Fortran program is our understanding of the Cauchy [12]-Jacobi [18] problem an if the time of 
floating point operation τFPO → 0 and also the machine epsilon εmach → 0 we obtain in the God computer the analytical 
result. The program can be converted in a constructive proof.

In the foolproof programming it is necessary to point out what to do if any denominator is zero, for example the special 
cases marked in Eq. (12). Here we have to make a social remark related to teaching. Equality of some real numbers presented 
by double precision looks like event with a negligible probability. However especially in our case it is not true. The program 
for calculation of limit of e sequence is working like a microscope magnifying the real axes around the searched value. Very 
often the empirical error � is comparable with machine error εmach and the dimensionless ratio N� ≡ �/εmach 	 1 can be 
not very big number, say N� 
 105. In this case the probability P 
 1/N� to use special case avoiding division by zero is not 
very rare event P 
 10−5 and even a personal computer can detect equality of real numbers ones per hour. The following 
Fortran listing contains a lot of analogous details. We note that the Padé index convention in the following Fortran program 
is transposed to that in the current paper.

Subroutine LimesCross (N, S , rLimes , i_Pade , k_Pade , i_err , error , Nopt )
implicit integer ( i−n)
implicit real (8) ( a−h ) , real (8) (o−z )
dimension s (0:N) , a (0:N+2) , b (0:N+1) , c (0:N+1)
Zero =0.d0
One =1.d0
rLimes=s (0)
i_Pade=0
k_Pade=0
rNorm=Zero

i f (N<2) then
i _ e r r =1 ! N>=2
Nopt=2
rLimes=s (N)
goto 137

endif

do i =0 ,N
b ( i ) = s ( i )
c ( i ) = Zero
rNorm=rNorm+dabs ( s ( i ) )

end do
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i f (rNorm==0) then
i _ e r r =2 ! S _ i =0

goto 137
endif

error = dabs ( s(1)−s ( 0 ) )
do i =2 , N
eloc = dabs ( s ( i )−s ( i −1))
i f ( eloc < error ) then

error = eloc
k_Pade=0
i_Pade= i
rLimes=s ( i )
i _ e r r =3
Nopt=i_Pade + k_Pade+1

endif
end do

Nb=N−2 ! N boundary
k=0

123 continue

! beginning of the c a l c u l a t i o n of Pade t a b l e P_ { k_Pade , i_Pade }
! k_Pade= power o f the denominator
! i_Pade= power o f the numerator
! Table ordered as a matrix numbering

do i =0 , Nb
Center= b ( i +1)
i f ( k>=1) then

rNorth= a ( i +2)
rNC= rNorth−Center
i f ( rNC==Zero ) then

rLimes= Center
k_Pade=k
i_Pade=k_Pade+ i
Nopt=i_Pade + k_Pade +1
error =zero
i _ e r r =4
goto 137

endif
endif
West= b( i )

WC= West−Center
i f (WC==Zero ) then

rLimes= Center
k_Pade=k
i_Pade=k_Pade+ i +1
Nopt=i_Pade + k_Pade +1
error =zero
i _ e r r =5
goto 137

endif
East = b ( i +2)
EC= East−Center
i f ( EC==Zero ) then

rLimes= Center
k_Pade=k
i_Pade=k_Pade+ i +2
Nopt=i_Pade + k_Pade +1
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error =zero
i _ e r r =6
goto 137

endif
! The new c r i t e r i o n Wynn−Frobenius Eq . (5) from the present paper

Wynn=One/WC + One/ EC
i f (Wynn. NE . Zero ) eloc =One/ dabs (Wynn) ! in search of l o c a l minimum
denom=Wynn
i f ( k>=1) denom=denom−One/ rNC
i f (denom==Zero ) then

i _ e r r =7 ! 1/ rLimes =0 , i . e . d ive rg e nt r e s u l t
Nopt=i_Pade + k_Pade +1
goto 137

endif
South= Center+One/denom
C( i )= South
SC=South−Center

! Optimal Pade approximant
i f ( eloc < error ) then

error = eloc
i _ e r r =0

k_Pade=k+1
i_Pade=k_Pade+ i
Nopt=i_Pade + k_Pade +1
rLimes= South ! = P ( k_Pade , i_Pade )

endif
end do ! i c y c l e
k=k+1

! Change of the s u c c e s i o n s
do i =0 , Nb

a ( i )=b ( i )
b ( i )= c ( i )

enddo
! Reduction of the boundary

Nb=Nb−2
i f (Nb>=0) goto 123

! E x i t
137 continue

end Subroutine LimesCross

Appendix B. Aitken algorithm for polynomial interpolation

In order to explain the novelty of the present achievement in the beginning we will recall the well known Aitken 
algorithm. Later on using this basis we will explain the general polynomial exponential. We follow the well-known reference 
book by Bronstein and Semendyayev [11]. If we need to calculate value of the function ϕn(x) at some fixed argument x, one 
can use following schematics (“crest by crest”) which is especially convenient for computer programming

x0 − x f0

x1 − x f1 ( f0, f1)

x2 − x f2 ( f0, f2) ( f0, f1, f2)

. . . . . . . . . . . . . . . . . .

xn − x fn ( f0, fn) ( f0, f1, fn) . . . ( f0, f1, . . . , fn).

Every symbol ( f0, f1, . . . , fk) denotes the value in the point x of the interpolating polynomial function, build on nodes 
x0, x1, . . . , xk , i.e. f0 = f (x0), f1 = f (x1), . . . , fn = f (xn). Those values calculate column by column, in the following manner. 
Numbers of the column ( f0, fk) are obtained by
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( f0, fk) = (x0 − x) fk − (xk − x) f0

(x0 − x) − (xk − x)
. (B.1)

Every following column is calculating by the former one at the same schematics, for example

( f0, f1, fk) = (x1 − x)( f0, fk) − (xk − x)( f0, f1)

(x1 − x) − (xk − x)
. (B.2)

The rounding error is minimized if we reorder the points as |x0 − x| < |x1 − x| < |x2 − x| < . . . |xn − x|. In such a manner we 
obtain the series

S0 ≡ f0, S1 ≡ ( f0, f1), S2 ≡ ( f0, f1, f2), . . . , Sn ≡ ( f0, f1, f2, . . . , fn). (B.3)

In order to obtain an approximation of limit of this sequence

S̃ = lim
n→∞ Sn (B.4)

we use the Wynn algorithm CNEWS algorithm with minimal-|η| criterion, which works even if the sequence (S0, S1, S2, . . . )
is divergent. It is only necessary the problem which we solve to be analytical one born from a real physical problem. One 
can easily check that if x = x0 then S0 = S1 = S2 = · · · = Sn = f0 and the limit has been reached, i.e. the function passes 
through the node point x0, and consequently through every nodal point.

Let us repeat the Aitken formula as an algorithm. Having fixed node point x0 we can calculate the linear approximation 
using a second node point x̃

ϕ(x; x0, x̃) = f (x̃) + f0 − f (x̃)

x0 − x̃
(x − x̃) = (x0 − x̃) f (x̃) − (x̃ − x) f0

(x0 − x) − (x̃ − x)
, (B.5)

where node arguments x0 and x̃ are parameters of the linear function. In such a way omitting in the notations the argument 
x we can calculate the sequence

( f0, f1) = ϕ(x; x0, x1), ( f0, f2) = ϕ(x; x0, x2), ( f0, f3) = ϕ(x; x0, x3) , . . . , ( f0, fn) = ϕ(x; x0, xn). (B.6)

In order to rewrite this conveniently for programming algorithm, we can use the same notations for the changing new 
values

f1 ← ( f0, f1), f2 ← ( f0, f2), f3 ← ( f0, f3), . . . , fk ← ( f0, fn). (B.7)

Then for the next column of the Aitken table according Eq. (B.2) using so re-denoted values we calculate

fk ← (x1 − x) fk − (xk − x) f1

(x1 − x) − (xk − x)
, for k = 2, 3, . . . ,n. (B.8)

The formula for a general column l is the same

fk ← (xl − x) fk − (xk − x) fl

(xl − x) − (xk − x)
=

∣∣∣∣ (xl − x) fl
(xk − x) fk

∣∣∣∣
xl − xk

, for k = l + 1, . . . , n; (B.9)

i.e. linearly interpolated value of the function at point x is ascribed as the new function value at the node point xk . 
In other words, the polynomial interpolation is reduced to sequential linear interpolations This procedure repeats until 
l = n −1. In such a way we program the series identically by the so defined polynomial interpolations ( f0, f1, f2, . . . , fn) =
(S0, S1, S2, . . . , Sn) using sequential (x0), (x0, x1), (x0, x1, x2), . . . , (x0, x1, x2, . . . , xn) set of nodes – this is the Aitken algo-
rithm. According to the general theory of Padé approximants, the Wynn CNEWS algorithm converts the series of polynomial 
approximation into Padé ones, and for N = n −1 we obtain the N-point Padé approximant. The calculation of the coefficients 
of the polynomials is a completely different mathematical problem. In the present paper we analyze the calculation of the 
approximant at some fixed point x, but not the coefficients in the polynomials in the numerator and denominator.

At solution of differential equations the node points can be ordered xn < xn−1 < · · · < x2 < x1 < x0 < x. In this case the 
numerical noise of rounding at calculations of differences can be minimized if we use the differences

x = x0 + h, x1 = x0 + h1, x2 = x1 + h2, x3 = x2 + h3, . . . , xn = xn−1 + hn. (B.10)

In this case is convenient to use the representation

xk − xl = hk + hk−1 + · · · + hl+1 =
k∑

i=l+1

hi, for k > l, and xk − x = (xk − x0) + (−h), (B.11)
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where all terms have one and the same sign. For the function values one can perform an analogous representation.
If the first K points are going to coincide x0 → x1, . . . , → xK the corresponding polynomial approximant is just the Taylor 

series

φ(x; x0) = f0 + f ′
0(x − x0) + 1

2
f ′′
0 (x − x0)

2 + · · · + 1

K ! f (K )
0 (x − x0)

K , (B.12)

where f ′
0, f ′′

0 , . . . , f (K )
0 are the first K derivatives of the approximated function, and x0 is the parameter of this series 

expansion. Re-denoting

f0 = φ(x; x0), f1 = φ(x; x1), f2 = φ(x; x2) , . . . , fn = φ(x; xn), (B.13)

we can apply the regular Aitken procedure using the new Taylor expanded functional values. In such a way, we have finally 
solved the generalized Cauchy [12]-Jacobi [18] problem: to obtain a rational approximation of a function passing through 
the N-points x1, x2, . . . , xN with fixed values of its first derivatives f ′

i , f ′′
i , . . . , f (K )

i at every at those points i = 1, . . . , N . 
We give only an idea for proof and a Fortran program to illustrate our understanding.

We will use this achievement for many applied problems. For example, for solutions of ordinary differential equations

dy

dx
= F(x, y). (B.14)

Using the former N-points with first derivative Taylor approximation K = 1, we can calculate the functional value y(x) using 
the explained method of Padé extrapolation and then calculate the first derivative at this point explicitly f ′(x) =F(x, y(x)). 
Renumbering later xn+1 ← xn , xn ← xn−1,. . . x2 ← x1, x1 = x0 and x0 ← x we can continue the procedure. The number of 
former points is determined by the indices of the optimal Padé approximants according to the �-(minimal-|η|) criterion. 
For the step h for the next point x = x0 + h one can apply many different criteria. To our knowledge such combination of 
methods for solution of ordinary differential equation without fixed order is a new one. We consider the content of this 
appendix is implicitly given in the body of the article and we give this clarification only for the beginner users.

Appendix C. Final formula for the Cauchy-Jacobi-Taylor problem

In many articles on applied mathematics and especially in physics, the accent falls how the result can be derived, 
reproduced, explained or programmed. For programming is very useful to use one and the same memory cell writing 
sequentially different values in it. On the other side, it is convenient to give a final set of formulae even if the price is the 
introduction of additional notations. In this section we make an extract of formulae in order to present in short the final 
solution of the Cauchy [12]-Jacobi [18]-Taylor problem using the Wynn CNEWS algorithm with �-criterion of the error.

Let us have explicit an analytical expression for a function 	(x), and its first K derivatives 	′(x), 	′′(x), 	′′′(x), . . . , and 
	(K )(x). We can calculate the values of these functions

	i = 	(xi), 	′
i = 	′(xi), 	′′

i = 	′′(xi), 	′′′
i = 	′′′

i (xi), . . . , 	
(K )
i = 	(K )(xi) (C.1)

at N = n + 1 nodal points x0, x1, x2,. . . , xn . In short, we have (K + 2)N real parameters f (k)
i and xi for i = 0, . . . , n and 

k = 0, . . . , K . The problem is to derive a rational function f (x), which at every nodal point has fixed functional values for 
its derivatives.

According Eq. (B.12) our first step is to calculate values of the Taylor expansion

f i = 	i + (x − xi)	
′
i + (x − xi)

2

2
	′′

i + · · · + (x − xi)
K

K ! 	
(K )
i =

K∑
k=0

	
(k)
i

k! (x − xi)
k, for i = 0, . . . , n, (C.2)

and to use it as values f i of a new function f (x) at nodal points xi .
The problem of Cauchy-Jacobi (C-J) [12,18] is to derive a rational function of the argument x passing exactly at the points 

(xi, f i). The rational approximation has 2N real parameters and this is our beginning.
The second step is to calculate the corresponding triangular Aitken table of the polynomial approximations according to 

the Aitken algorithm described in Sec. B. For the left column of functional values we have ai,0 = f i for i = 0, . . . , n. Then 
we have to apply a double cycle filling of the table according to the Aitken algorithm Then we have to calculate sequentially 
l-th column of the Aitken table for l = 1, 2, . . . , n − 1 and for every fixed column number l we have to calculate the values 
in every row

ak,l+1 =

∣∣∣∣ (xl − x) al,l
(xk − x) ak,l

∣∣∣∣
xl − xk

, for k = l + 1, . . . , n. (C.3)

In such a way we obtain the sequence S0 = f0 = a0,0, S1 = ( f1, f0) = a1,1, S2 = ( f2, f1, f0) = a2,2, . . . , Sn = ( fn, fn−1, . . . ,
f2, f1, f0) = an,n , which limit we will search using the Wynn CNEWS algorithm. Here are given some often used notations.
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The third and final step is to calculate the Padé table. The (−1)-th row is the initialization

ri,−1 = ∞, for i = 0, 1, 2 . . . , n, n + 1. (C.4)

Let us recall that 1/∞ = 0. The main detail is the initialization of the 0-th row

ri,0 = ai,i, for i = 0, 1, 2, . . . , n. (C.5)

Having two sequential rows in the Padé table we can calculate the elements in third one using the CNEWS Wynn algorithm. 
For simplicity we can make the local notation

⎛
⎝ . . . N . . .

W C E
. . . S . . .

⎞
⎠ ≡

⎛
⎝ . . . rl,m−1 . . .

rl−1,m rl,m rl+1,m
. . . rl,m+1 . . .

⎞
⎠ (C.6)

in order to use Gragg notations in the Wynn identity Eq. (3). Then we calculate

ηl,m =

⎧⎪⎨
⎪⎩

1
1

E − C
+ 1

W − C

, for E �= C and W �= C,

0, for E = C or W = C .

(C.7)

Then we calculate “South” element (using ∞ = 1/0, if some of denominators is zero)

D ≡ 1

E − C
+ 1

W − C
− 1

N − C
, S =

⎧⎨
⎩

C + 1/D, for D �= 0
∞, for D = 0
C, for D = ∞

, rl,m+1 = S. (C.8)

During these calculations we look for the minimal ηl,m element

� = |ηL,M | = min
l,m

|ηl,m|. (C.9)

The indices L, M mark the first time when this minimal value � is reached. We recommend that rL,M is the optimal 
Padé approximant and � is the empirical error. For calculation of rL,M are actually used only the first L + M + 1 node 
points (x0, f0), (x1, f1), . . . , (xL+M , f L+M). The calculated area in the Padé table has V-shape. First we calculate the first row 
r1,1, r2,1, r3,1, . . . , rn−2,1, rn−1,1, then the second one r2,2, r3,2, r4,2, . . . , rn−2,2. The process finishes with the calculation of 
rk,k in n = 2k is even, or with rk,k, rk+1,k if n = 2k + 1 is odd. The total number of interpolation node points x0, x1, . . . xn

is N = n + 1. One can easily check the special case: if E = C or W = C then η = 0, D = 0 and S = C , i.e. the limit of the 
sequence S̃ = C is this central element. This means that the calculated Padé approximant passes through the node points.

Calculated according the derived formulae rational function of x

rl,m(x; �, (x0, f0), (x1, f1), (x2, f2), (xl+m, fl+m)) (C.10)

passes through all node N = l + m + 1 points 
{
(x0, f0), (x1, f1), (x2, f2), (xl+m, fl+m)

}
which are 2(l + m + 1) parameters 

of the sought N-point Padé approximant. Moreover, as a result of the performed numerical experiments we consider that 
the �-criterion gives the best empirical evaluation of the searched result rL,M ± �. This �-criterion can be used for practical 
calculations of the limit of many sequences S0, S1, . . . , Sn obtained from some analytical procedure. For complex numbers 
the formulae are the same. Actually it is extremely difficult to find some real physical problem derived by an analytical 
procedure for which the calculated in such a way limit does not converge to the experimental result. The price of every 
exception is 10$, write us now!

In the epoch of Cauchy and Jacobi (C-J) [12,18] the problem of finding of rational approximation of a tabulated function 
was a problem of pure mathematics. The appearance of computers made possible different solutions of the C-J problem 
to be used in many applied tasks and at contemporary fragmentation of mathematics, the solution of the C-J problem 
administratively belongs to the applied numerical analysis. It will be very instructive to compare present set of formulae 
for the solution of C-J problem by calculation of N-point Padé approximant by Wynn CNEWS algorithm with alternative 
solutions implemented in commercial software as, for example, Mathematica and Maple products.

Studies what to do when we have a zero denominator and boundaries of the cycles only fogs the clear idea. We repeat 
the obtained chain of formulae which have self-verifying condition of applicability. Often the diagonal Padé approximants 
r1,1, r2,2, r3,3, . . . have best convergence and using them we repeat our prescription in short.

Numerical recipe: Using tabulated values of an analytical function 	(x) and its K first derivatives 	(k)(x) at N node points 
xi calculate when possible
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n = N − 1, k = n/2, ai,0 = f i =
K∑

k=0

	
(k)
i

k! (x − xi)
k, i = 0, . . . ,n, ak,l+1 = (xl − x)ak,l − (xk − x)ak,l

xl − xk
,

ri,0 = Si ≡ ai,i, rl,m+1 = rl,m + 1
1

rl+1,m − rl,m
+ 1

rl−1,m − rl,m
− 1

rl,m−1 − rl,m

, (C.11)

ηlm = 1
1

rl+1,m − rl,m
+ 1

rl−1,m − rl,m

, � = min
l,m

|ηl,m|, fCJT(x) ≡ S̃ ≈ rk,k, 	(x) ≡ S̃ ≈ rk,k ± �,

and you obtain a good rational appoximation of the tabulated in N point function 	(x). We are unaware of an alternative 
explicit solution of the Cauchy-Jacobi-Taylor (CJT) problem. Our main conclusion is that obtained by the Wynn identity value 
� gives the long sought criterion for the choice of the optimal Padé approximant. If the approximated function is actually a 
ratio of two polynomial, then � 
 εmach. The original C-J problem corresponds to the special case of K = 0. For approximate 
limit of a numerical sequence S̃ = lim

n→∞ Sn we use CNEWS Wynn algorithm with �-criterion for the choice of optimal Padé 
approximant.

In conclusion we consider that �-criterion for the choice of optimal Padé approximant is the crucial missing link �’s 
central-news algorithm to find many applications in physics: analytical continuation, series summation and solving differ-
ential equations.

Appendix D. Drawing a circle x2 + y2 = 1. Etude for a student

D.1. Homework task

Let solve the Cauchy problem, and to find the solution of the ordinary differential equation

dy

dx
= F(x, y), F(x, y) = − x

y
, y(0) = −1. (D.1)

D.2. Teachers psychology

This is a trivial problem with separation of variables. Differentiation the equation of the circle x2 + y2 = r2 = const
we obtain xdx = −ydy, whence F(x, y) = −x/y. Simplest test of accuracy of the used numerical method is to look at 
1 − √

x2 + y2 versus x.

D.3. Solution

Let have recorded sequential “time” steps of the trajectory (x0, y0), (x1, y1), (x2, y2), . . . , (xt , yt) where index t is inte-
ger. In the last point we calculate the derivative Ft = −xt/yt = tan(θt), where θt = arctan(yt , xt) is the angle of the slope of 
the curve the solution of the differential equation. This last point (xt , yt) we use as the centre of a new coordinate system, 
with the x′ axis chosen along the tangent of the trajectory. In such a way we obtain the trajectory in the new system(

x′
i

y′
i

)
=

(
ct st

−st ct

)(
xt−i − xt

yt−i − xt

)
, ct = cos(θt), st = sin(θt), for i = 0, 1, 2, . . . , nt . (D.2)

Here the integer number nt describes how many former points we take into account. Analogously one can find the angles 
between the tangents in moment t and the present one

f ′
i = tan(θt−i − θt), for i = 0, 1, 2, . . . , nt . (D.3)

Having argument, function and its derivative in Nt = nt + 1 points (x′
i, y′

i, f ′
i ) for i = 0, 1, . . . , nt we can use the described 

procedure of extrapolation and to calculate the function �y′
t+1 at argument �x′

t+1 = ht . The method gives the empirical 
error �t+1 at the calculation of the new point, and the used optimal powers Lt+1 and Mt+1 in the numerator and denomi-
nator of the Padé ratio. This means that actually values of only Nt+1 = Lt+1 + Mt+1 + 1 point is used and returning in time 
is necessary only for nt = Nt+1 − 1 points back.

The differences of the coordinates have to be calculated in the initial system(
�xt+1
�yt+1

)
=

(
ct −st

st ct

)(
�x′

t+1
�y′

t+1

)
. (D.4)

Now we have to check the accuracy. If the empirical error �t+1 > εmax is larger than the maximal acceptable error εmax
we have to use halve step ht/ = 2.0 and to try again to calculate the next time step in the trajectory.
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If the empirical error �t+1 < εmax is smaller than the maximal accepted error the new point is recorded and we can 
calculate the next point of the curve

xt+1 = xt + �xt+1, yt+1 = yt + �yt+1. (D.5)

For the next step we can try to use slightly bigger step

ht+1 = 1.1

(
εopt

�

)1/nt+1

ht, (D.6)

where optimal error εopt = εmax/10.0 we keep to be, say, one order of magnitude less than maximal acceptable error εmax. 
Moreover for the next point we will try to use one node point more nt+1 = nt + 1. Here we wish to stress out that our 
numerical method for solution of ordinary differential equations is “disordered”. The number of the node point in the 
optimal Padé approximant is also adaptive as the step of the integration ht .

In the beginning we have to start with a very small step, for example the square of the machine epsilon h0 = √
εmach. In 

this case the procedure of extrapolation is trivial – we start with the method of Euler

y1 = y0 +F(x0, y0)h0, x1 = x0 + h0. (D.7)

There are no former points to return at n0 = 0. The second is another Euler steps with h1 = h0

y2 = y1 +F(x1, y1)h1, x2 = x1 + h1. (D.8)

Having already 3 points we can for first time apply the CNEWS �’s algorithm W = y0, C = y1, E = y2 and we can calculate 
according to Eq. (9) the improved value

ỹ2 = r1,1 = y2 + 1
1

y2 − y1
+ 1

y0 − y1
− 1

∞ − y1

,
1

∞ − y1
= 0. (D.9)

This is the well-known �-process by Aitken, with empirical accuracy at calculation of second “time” step t = 2

η1,1 = 1
1

y2 − y1
+ 1

y0 − y1

, �t=2 = |η1,1|, L2 = 1, M2 = 1, n2 = L2 + M2 = 2, N2 = n2 + 1. (D.10)

This empirical error �2 has to be compared with the maximal one εmax Now after this initialization we can continue with 
the calculation of the third time step n3 = n2 + 1 = 3. In other words for calculation of the third point y3 we can return 
n3 = 3 points back and for extrapolation we go to the beginning y2, y1, y0. After some steps returning back in “time” nt is 
limited by the numerical noise of rounding errors.

We use this method in a magnetohydrodynamic problem [30] and long time ago it was used in one-dimensional three-
body problem. If the considered method is useful for many physical problem following Gragg style it can be called missing 
Brezinski method.

The conventional methods are applicable for solving the differential equation (D.1). But standard numerical software can 
be used if we rewrite it as a time dependent system with real time τ

dx

dτ
= −y, x(0) = 0, (D.11)

dy

dτ
= +x, y(0) = −1, (D.12)

and to check the solution x = cos(τ − π/2) and y = sin(τ − π/2) with almost machine error.
A small variation of the same excise is to start with equation of the unit circle |y| = √

1 − x2 for which the differentiation 
gives dy/dx = −x sgn(y)/

√
1 − x2. Having the best rational approximation for the Cauchy [12]-Jacobi [18]-Taylor problem 

(interpolation with fixed values of the derivatives), we can use it as predictor to calculate the new (x, y)-point and then to 
calculate the derivative in the new point F(x, y) exactly. In such a way we have obtained the best rational approximation 
for solving Cauchy problem when the solution y(x) is an analytical function. In some cases extrapolation of a curve along 
the tangent is very useful especially when derivative is divergent. In any cases having a good rational approximation we 
have to try tho minimize the noise related to errors of numerical truncation avoiding calculations of differences when it is 
possible.
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